The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.
نویسندگان
چکیده
Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus (S-locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S-alleles can be dominant, recessive, or codominant, and that the dominance level of a given S-allele can depend upon whether pollen or stigma specificity is examined. Here and in the companion paper by Llaurens and colleagues, the evolution of dominance in single-locus SSI is explored using numerical models and simulation. Particular attention is directed at factors that can cause S-allele dominance to differ in pollen versus stigma. The effect of recombination between the S-locus and modifier locus is also examined. The models predict that limitation in the number of compatible mates is required for the evolution of S-allele dominance in the stigma but not in the pollen. Tight linkage between the S-locus and modifier promotes the evolution of S-allele dominance hierarchies. Model results are interpreted with respect to published information on the molecular basis of dominance in SSI systems, and reported S-allele dominance relationships in a variety of species. These studies show that dominant S-alleles are more common in the pollen than in the stigma, a pattern that when interpreted in light of model predictions, suggests that mate limitation may be relatively infrequent in natural populations with SSI.
منابع مشابه
Incest versus abstinence: reproductive trade-offs between mate limitation and progeny fitness in a self-incompatible invasive plant
Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-loc...
متن کاملLife history mediates mate limitation and population viability in self-incompatible plant species
Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results supp...
متن کاملSelf-fertilization and the evolution of recombination.
In this article, we study the effect of self-fertilization on the evolution of a modifier allele that alters the recombination rate between two selected loci. We consider two different life cycles: under gametophytic selfing, a given proportion of fertilizations involves gametes produced by the same haploid individual, while under sporophytic selfing, a proportion of fertilizations involves gam...
متن کاملEvolutionary dynamics of sporophytic self-incompatibility alleles in plants.
The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in ...
متن کاملThe sheltered genetic load linked to the s locus in plants: new insights from theoretical and empirical approaches in sporophytic self-incompatibility.
Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 63 8 شماره
صفحات -
تاریخ انتشار 2009